
AD-A1i8 211 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 9/2
M MODEL FOR ESTIMATING TACTICAL SOFTWARE MAINTENANCE REGUIREMEN--ETC(U)

JUN 82 W H MERRING
UNCLASSIFIED NL" EIIIIIIIIEEE
mEIhEIIIEEEIIE
EEIIIIIEIIIEI
IIIIIIIEEEIIF

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A MODEL FOR ESTIMATING

TACTICAL SOFTWARE MAINTENANCE
REQUIREMENTS

- by

C-.') ~William H. Merring, 11II82
LU J June 1982

LL. Thesis Advisors: D. C. Boger A

R. Modes

Approved for public release: distribution unlimited

82 08 16 171

SECUNITV CLASSIFICATION OF TNIS PAGE (obse Dos* agm.________________

REPOW DOOJMNTATION PAGE RZAs INTR~UCIONS

uG6VT ACCSSMN w.: 3- RECIPIENT'$ C-A?-AL.@ NIUfSSaEf

S. TILE food Souffle) S- T,* OF at GOT a 061Woo COV9060

A MODEL FOR ESTIMATING TACTICAL SOFTWARE Master's Thesis
MAINTENANCE REQUIREMENTS June 1982

S. PESFORWRO @36. REPORT NU#MogU

7. AjNOW&a S CONTRACT 04 GRANT MloNSEVeI

William H. Mrring, III

. ~ORFSNNG OfteANIZAT16ON AM# NO AOSESS PSOIGAAM ELEME~ eac. *

Naval Postgraduate School
Monterey, California 93940

11. CONTROLLING OPPUCE "Aug ANO ADDRESS QS. REPORT OATS

Naval Postgraduate School Jun 1982R

Monterey, California 93940 51 umg F AE

14. MONITORING AGENCY NAE A AO*688ifd'igwalk Msm CootoUft amo. IL SECUMITV CLASS. (of 'be. fteeqI

Unclassified

DI OSTRIBUTION STATEMEN6T (of Ohio *.PMet

Approved for public release: distribution unlimited

M? OISTRIUUTION STATEMENT (0100* 6680,0111 humbeu" IO" 10. Ii et 0111111 Now n~

10. SUPPLEMENTARY NOTES

Is. PCY 03*one (CaftloI.we I Ub.0 s 1pAE, to swoerfi doo w 6toon

Software Maintenance
Tactical Software maintenance
Software Microestimation
Software Metrics

$0. ASSIRACT (Cowmoo of awwue .e of mseew o Idenelt by blef malor)

* -~ Recent studies have pointed to th, increasing burden that is software
Maintenance. The maintenance of tactical systems software will demand re -
sources that exceed those expended during the development phase a their
numbers and time-in-service increase. This increased demand for resources
requires more effective management of the maintenance phase and developmegnt
of the software with maintenance in mind.

This thesis presents those items that should be considered and utilized

DO ~ 147 EDTIoN or INRev so to .use~a-
5N OI2.0I.SSISBcumy, CL*ISIICATOM OF THNSS#616(U M Di.;rw-

LLI

20. (.continued)

)during the development phase to reduce maintenance costs over the life-
cycle of the system. It also presents a model that uses the known con-
figuration of the program to estimate the maintenance personnel require-
ments for that system. These requirements will be estimated from the
beginning of the maintenance phase to its completion. The model utilizes
the technique of measuring the characteristics of the software to obtain
the estimation.

F -n

NIUDIS cc

2TC .

DD orin 1473d
sega~v46AOPMIFIN & "i rGGi

Approved for public release: distribution unlimited

A Model for Estimating Tactical Software Maintenance
Requirements

by

William H. serring, III

Captain, United States marine Corps

B.S.I.E., Rutgers University, 1976
H.S., University of Southern California, 1981

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORHATION SYSTEMS

from the
NAVAL POSTGRADUATE SCHOOL

June 1982

Rut hor:--

Approved by:

Thesis Co-advisor

Thesis Co-advisor

Second Read4er

Chairma , Dep tment of Administrative Sciences

Dean of Information and Policy Sciences

3

k BSTRkCT

Recent studies have pointed to the increasing burden

that is software maintenance. The maintenance of tactical

systems software will demand resources that exceed those

expended during the development phase as their numbers and

time-in-service increase. This increased demand for

resources requires more effective management of the mainte-

nance phase and development of the software with maintenance

in mind.

This thesis presents those items that should be consid-

ered and utilized during the development phase to reduce

maintenance costs over the life-cycle of the system. It

also presents a model that uses the known configuration of

the program to estimate the maintenance personnel require-

ments for that system. These requirements will be estimated

from the beginning of the maintenance phase to its comple-

tion. The model utilizes the technique of measuring the

characteristics of the software to obtain the estimation.

4

16

TABLE OF CONTENTS

I. INTRODUCTION 8
A. CONTEXT 0?" THE STUDY AND BACKGROUND 8

B. FORMAT OF THE THESIS 10

II. DESIGNING SOFTWARE FOR MIINTAINABILITY 12

A. SOFTWARE LIFE-CYCLE 12

B. REQUIREMENTS ANALYSIS 12

C. SPECIFICATION PHASE 14
V. DESIGN PHASE 16

E. CODING 18

F. TESTING PHASE 20

G. MOVEMENT INTO THE MAINTENANCE PHASE 21

H. SUMARY 26
III. SUGGESTED MODEL FOR ESTIMATING PERSONNEL

REQUIREMENTS DURING MAINTENANCE 28

A. INTRODUCTION 28

B. DEVELOPMENT OF METRIC TO ESTIMATE CORRECTIVE

MAINTENANCE WORKLOAD 29

1. Bebugging 29

2. Implementation of Bebugging 30

3. Estimation of Corrective Maintenance

workload 34

C. DEVELOPMENT OF METRIC TO ESTIMATE ADAPTIVE

MAINTENANCE LOID 36

1. Use of Halsteads Effort etric as a

measure of the Program Complexity 37

2. Estimation of Adaptive Maintenance
Workload 41

D. MODEL AGGREGATION 3.. 63

E. CHAPTER SUMMARY 45

IV. CONCLUSIONS 6

LIST OF REFERENCES 8
INITIAL DISTRIBUTION LIST 52

5

LISr OF TkBLES

I. Proqram Test History. 22

6

3 I
LIST OF FIGURES

2.1 Software life cycle phases 13

2.2 Software life cycle: per error fix cost per

phase. 15

2.3 Structuring the maintenance process. . . o . . . 253.1 Software maintenance improvements with

structured programming. 35

7

1. LNTBDC.M1iz

A. CONTEXT OF THE STUDY AND BACKGROUND

The maintenance of software that has been acquired and

made operational by the government is a growing concern.

The number of tactical computer programs in service and

those under development will increase the future requirement

for more effective and detailed planning of all resources in

the software maintenance area. Not only the number of these

systems, but also the length of time that these systems

remain operational will add to the requirement for more

effective maintenance management. This management will be

especially demanding with regards to personnel requirements

since this will potentially be the most expensive and diffi-

cult single resource to manage.

The Harine Corps Tactical Systems Support Activity

(HCTSSA) has the Marine Corps responsibility for maintenance

of the software of tactical systems [Ref. 1]. The objective

of this research is to present the current ideas in software

engineering and maintenance. This study was completed with

NCTSSA's function in mind, but this should not be construed

as limiting the tenets outlined in this paper as being

limited to HCTSSA. They should be applicable in varying

degrees to all software projects.

It is important at this point to realize that good main-
tainability begins very early in the software development

process and can only be planned from the beginning of the

system life-cycle. Attempts to improve maintainability late

in the project are potentially hazardous to the integrity of

the software and extremely can be expensive. The inclina-

tion on the part of the developers to reduce near-term costs

8

at the expense of maintainability almost ensures that the

effort expended later in the life-cycle will far exceed any

immediate advantage.

Mast of the literature available on software maintenance

ard its related aspects falls into the area of general

purpose computing. Little of the current information avai-

lable specifically addresses tactical computer software.

While this initially appeared to restrict sources of infor-

mation, it became apparent that, even though there are some
definite differences between tactical and general purpose

computing, they are less important than the similarities.

The particularly demanding parts of tactical systems are the
real-time requirements or scheduling constraints, and the

"critical" or "life-and-death" nature of their decisions.

In the bulk of general purpose software these features are

either not present or not present to the same degree.

(Ref. 2]. The software will to a great extent be similar in

composition even if the requirements differ. Additionally,
many of the processors that the tactical systems are based

on were originally designed for a commercial or general

purpose systems.

Software maintenance, for the purposes of this paper,
will ke defined as those actions which are taken to repair

or beneficially alter the software in a system that leaves
the majority of the instructions in the program unaltered

and the designed function of the system intact. Software

maintenance has been divided into two types, corrective

maintenance and adaptive maintenance (Ref. 31.
Corrective maintenance is that maintenance which is

required to repair errors or improve the functioning of the
software without altering its primary functions. The latter
part of this type of maintenance would concern itself with
essentially perfecting the programs or making them more

9

-Ji

machine efficient. The repair portion would consist of

fixing errors. These errors can range in degree from an

error that results in total failure of the syster to an

error that is bothersome but has no effect on performance

(Ref. 4]. The second type of maintenance is that of

enhancement or adaptive maintenance. This occurs when a
minor change in the function of software is desired. This

change can improve the system by increasing its capabilities
or changing its operation to the form that the user desires

at some time after the system has been made operational.

The changes made should leave most of the system's software

as it was.

Software maintainability is that degree to which the
software can be changed or corrected. It is the degree of

ease the aintainer has in understanding the software and
then applying the proper corrective action or integrating
the desired enhancement. Software reliability is the extent

to which the program performs its designed functions accu-

rately and in a timely manner. These two concepts will be

related to each other throughout the life of the software.

B. FORNAT OF THE THESIS

This paper has been broken into two main sections. The

first section will describe those methods that should be
used early in the life-cycle of the software. The objective

of this section is to present those ideas that should have

their greatest effect on reducing the total life-cycle cost

of the software with emphasis on reducing the costs of the

maintenance phase. It is important to stress that extra
time or money spent early in the project can reduce costs

later in the life-cycle of the software at an extremely

favorable rate.

10

The second section of the paper will deal with

presenting a proposed model for the predicition of the

personnel required for maintenance of a system's software

once HCTSSA assumes full responsibility for this function.

An important feature to note in this model is that it is

based on the known and quantifiable parts of the software.

The programs have already been written and thus HCTSS& will

know what they consist of. This fact alone should aid the

predictive capabilities of the model.

11

II. DIJNG SOTIE FOR IINTAINABILIT

A. SOFTVARE LIFE-CYCLE

The software life-cycle can be divided into six distinct

areas. These are Requirements Analysis, Specification,

Design, Coding, Testing, and Operations and maintenance (see

Figure 2.1) [Ref. 5]. Each of these areas can be further
broken into sub-areas and often overlap. Only those items
that are pertinent to maintenance will be developed.

B. REQUIREHETS ANALYSIS

During the requirements analysis the type of system and

its capabilities are identified. This process takes place
between the user and the developer. Although in the past
this phase has been considered less important, it is both
critical to successful maintenance and difficult. It is
critical because one must ensure that the user's require-

ments are met and it is difficult because this phase has not

lent itself to the kind of structuring that allows a cook-
book or step-by-step approach. The user and developer

during this phase attempt to determine the user's needs, a
step which is often difficult to accomplish with the tech-
nical tools available to conduct the project CRef. 6].

Items that are important to consider during this phase
which improve subsequent maintainability include, first,

identifying the maintenance group (in this case HCTSSA) and
including them in the review of the system requirements

[Ref. 7]. The purpcse of this is twofold, first, to deter-
mine the maintenance facility's capability to support
maintenance and to allow the maintenance managers to begin

12

t

Requirements Analysts

Speciffcatton

!F

Destgn 1 Software
Development
Process

CodIng

Testing

Operattons and Software
Matntenance Matntenhnce

Process

FIGURE 2.1 Software Life Cycle Phases.

Source: WCIne CarUi nL. y D. 33.
van Notran I.'od Ca~v.~gr .. P 3

planning for the maintenance phase of the project in rela-

tion to the other systems currently operational. Second, it

is at this tine that thought should be given to developing

schedules of priorities, enhancements, and resource alloca-

tion. The enhancement portion would be extremely difficult

to define precisely, but planning for it needs to be

conducted in some form as experience has shown that this

accounts for, on the average, forty-two percent of the
maintenance effort [Ref. 8]. This early identification of
enhancements should afford the maintenance facility enough

lead time to begin considering its support requirements.
The previous experience of the facility in dealing with
enhancements should also allow it to make an estimate of the
enhancement rate. The development of enhancement estimation
should include data gathered from both the vendor and the

facility. This requires the establishment of a database

that deals with these areas and is readily available to the
managers of the software maintenance facility.

C. SPECIFICATION PHASE

It is during the specification phase that the functions

of the system are defined. This has to be done with the

user to ensure that his requirements will be met. Failure
to accomplish this will result in costly corrections either

before acceptance when discrepancies arise during testing or
later when adaptive maintenance has to be done to bring the
system in line with the user's needs. Figure 2.2, the
information for which was obtained from the software

n Guidbo by R. L. Glass and R. A. Noiseux,

showe how the cost per error increases as the life cycle

progresses.
This phase should be conducted between the user and the
developer to ensure that both understand the potentials of

14i

60

'55

45

40

35

30

25

20

15

isi
10

lw m ossign imsmunettn Test ing pointmnc

Ftgure 2.2. Software Iffe cycle:
per error fIx cost per phase.

s .h..ei'1,'e

4i,

the system. The user so that unreasonable demands or expec-

tations are not made and the developer to ensure he under-

stands what the user requires and explain what is within the

capabilities of the current technology.
The specifications give a concise description of the

system's functions to both the user and the developer

[Ref. 9]. The completeness and correctness of these speci-

fications will govern the entire project. Good specifica-

tions will afford management better estimates of the

magnitude of the project for scheduling purposes.

Conversely, poor specifications will result in software that
cannot be expected to perform adequately or even be useful
for the increased costs that it will create. It is during
this phase that structured programming should be incorpo-

rated into the project to specify the structure of the soft-
ware for the design phase.

During this phase the maintainer should be included in

review of the specifications and he should evaluate the
impact on current systems [Ref. 10]. The latter allows the
maintenance facililty to refine the planning for maintenance
begun during the requirements analysis phase and the former

allows the maintainer to provide insight as to what sections
of the program can be provided through reused code. It is
at this time the identification of those areas that could be

implemented through the utilization of reused code should
beg in.

D. DESIGN PHASE

The design phase is when the structure of the software

is actually delineated. The designer develops in detail a
structured hierarchy of modules. This phase is critical as

studies have identified that almost sixty-four percent of
the software's errors have arisen from poor design

16

LL

CRef. 11]. A well-structured design will either eliminate

errors or facilitate detection of design errors early in the

life-cycle of the system when they are least expensive to

fix. This is also the phase during which the most widely

accepted methods of ensuring maintainability are instituted.

Structured design is the first of these methods.

Structured design consists of following an established set

of procedures for accomplishing the design phase. It estab-

lishes the framework for the software and, when properly

completed, facilitates maintenance The structure or frame-

work of the modules should be hierarchial with control

flowing from top to bottom in a logical manner with no level

calling on a higher level. The top level should be the

highest level of control logic present (Ref. 12].

Part of this structure is the design modules, which are

those modules that are constructed luring the design phase.

They have been determined to improve maintainability by

almost eighty-nine percent of their users (Ref. 133. The

key aspect of the modules is that they should perform a

single function. This reduces their complexity and allows

for both easier error checking and error correction. The

aspect of a single function is important to maintenance as

it makes the module easier for the maintainer to understand

what the module is doing. The capacity of the system to use

previously coded modules is increased through this method.

Idditionally, the flexiblity of the system is increased

through the plug-in capabilities inherent in modular design.

During this phase it is again important for the devel-

oper and the prospective maintainer to maintain close

contact. The maintainer is able to provide insight as to

what and how the current systems are performing and espe-

cially to provide information on what functional modules

have already been coded and are available from previous

17

projects. The object here is to reduce the total effort and

possibly eliminate any pitfalls that have been experienced

in previous designs.

Documentation of the program increases in importance as

the development of the system progresses. The developer

should ensure that all steps of the process are explained

fully. All parts of the hierarchy and modules should be

explained completely to ensure adequate understanding of

both their functions and methods of implementation. This

will considerably ease the saintainer's burden when he has

to correct errors or enhance the system such later in the

life of the system when those who developed the system are

not available for explanations as to why and how. The

maintenance personnel can provide valuable input to the

documentation design by providing information on those types

that have proved especially helpful and easy to use.

E. CODING

This phase is possibly the best understood phase in the

entire life-cycle. However, there are items that need to be

particularly adhered to if maintainability is to be
obtained. The first of these is widely recognized as aiding
both development and maintenance. It is the use of a high

order language. The greatest contribution of a high order

language is that it adds readibility to the program, thus
increasing the understanding of the code. Another technique

that will facilitate understanding of the code is the use of

structured programming. This is the grouping of similar

modules and the use of such techniques as indentation of

inside a program to increase zeadability.

Reused code has excellent potential to reduce the life

cycle costs of software. it can do this through reducing

coding and testing of nodules, and consolidation of

18

U

maintenance through reduction of the total number of unique

modules that need to be maintained. It has been applied in

limited situations with significant improvements in
productivity and reductions in development and maintenance

costs (Ref. 14]. The maintenance facility would be required

to maintain a library of current modules that are available

for use and in operation. It would also maintain the data

on those modules in terns of error rates, system locations

and other important information.

It is during this phase that reused code is inserted

into the program where it was identified as being suitable.

Through the reuse of code, not only the coding time but also

the testing effort is reduced. The reused code has been

tested and implemented in other systems and has been proven.

There should be many areas in each new program that provide

the opportunity for the reuse of code. k reduction in

required maintenance should occur as one module is repaired,
the change can be applied to all systems using that nodule
(Ref. 15]. The primary advantage in terms of maintenance is
the reduction in the probabilty of errors being generated by

that module.

Upon completion of the coding and the checking of the

module by the programmer, that module should be passed on to

be checked by another individual. This checker should use a

checklist that identifies the common errors that arise in
programs (Ref. 16]. The use of the checklist will improve

the productivity of the inspection process greatly. in

example of an inspection checklist can be found in T. Gilbes
book on .1 hft, ~ csi on p. 59.

a technique that shows much promise in increasing both

the maintainability and reliability of software is the use

of dual code. The dual code technique would be implemented

during this phase of the life-cycle and consists of

19

utilizing the structure developed during the design phase to
independently construct two sets of code. hile it would

appear to increase costs by a factor of two, it has in its

limited application increased costs over the life-cycle from

five to ten percent in cases where no future benefits have
been obtained. In most cases, however, a net cost savings

of up to fifteen percent or a substantial increase in the

quality of the code produced has been realized (Ref. 17].

The advantages of dual code can be manifold. The first,
and most important in terms of tactical systems, is the

increased quality of the software produced. The reason for

this is that the two sets of code will check each other.

The results they produce can be checked to determine if

there are differences between the and thus possible errors.

Therefore a check on the quality of the coding is provided.

This technique would have one program essentially do the

work of the desk tester, thus automating this step in the

process "Ref. 18]. This automation of the desk testing

process should increase the dependability of the checking

that is conducted. Dual code is also used in conjunction
with the bebugging technique, which will be explained later.

P. TESTING PHASE

The testing phase can be broken into three parts: unit

level, integration, and system testing. Unit level testing

is done for each module to determine if it functions prop-

erly. Integration testing is completed next and is done in

either a top-down or bottom-up fashion. It ensures that the

modules will work properly in the program environment. The

system test is completed next and is done to ensure that the

system meets the specification it was designed for.

The maintainer should be involved in this entire phase

to give advice on the test methodology. He has current

20

information that concerns systems that are on-line and is
able to highlight likely areas for extra attention during

testing.

Host important during the testing phase is the documen-

tation of the testing. This documentation should provide

information on the error rate of each module, the type of

error, and difficulties with the overall system. Also

included should be data on the manpower and resources

required on the project to date, broken down by modules if

possible. Table I contains an example of the data that

should be included on the program's test history. This

information is important to the maintainer as it will give

him some idea as to possible trouble spots in the software

and an overall idea as to the difficulty he will experience
in maintaining the entire program. A system that is diffi-

cult to maintain early in its life time will continue to be

difficult throughout its entire life and needs to be identi-
fied as such as early as possible.

G. HOVERENT INTO THE RAINTENANCE PHASE

During a study conducted by Lientz and Swanson, it was

determined that the best organization for conducting ainte-
nance is one that performs that function solely. This

facility should be separate from that of development. They
gave as possible reasons, increased efficiency and greater

control of efforts and reduced costs that arise from this

specialization [Ref. 19J. Additional benefits can occur

through the possible career enhancement of programmers who

become involved with maintenance.
A tradeoff of a separate maintenance function as

compared to one integrated with development is that the

productivity of the maintainers declines when fewer of the

original developers are involved in maintenance (Ref. 20].

21

TABLE I

Program Test History.

Average Number of Unit Tests Executed per Module
Number of Errors Discovered dauring Tesin .
Average Number of Errors Discovered in a nodule (UAEN)
Total Number of titements Modified to Correct rrors
List of Nodules in which the Number of Errors Dis-

covered Exceeds UAEN
Types of Errors Discovered

-Hardware Failufe
-Software Reaction to Hardware Failure
-Cod.ng Error
-Desigqn Error
-Specificat ion Error
-Logic Error*
-Computational Error*
-Data Error*

Average Length of Time to Discover and Correct an
Error

Number of Errors Discovered during Integration
Test ing

Average Number of Errors Discovered in a NodulelINER)
List of Modules in which the lumber of Errors Dis-

covered Exceeds IAE
Total Number of Statements Nodified to Correct Errors
Total Number of Midiles Nodified to Correct Errors
Types of Errors Discovered
Average Length of Time to Discover and to Correct an

E ror

Number ot rs Discovered daring Syste (Acceptance)_ Testing.
Aerage Number. of 9rm Discovered per odule (SAKE)
List of odules 8odi ied to Correct rrors
Types of Errors Discovered
Average Length of lIne to Correct an Error

*Error type added by author of this thesis

Sarc*: McClure, ar L ff&±wr2 I

22

This can be partially compensated through the use of a

"maintenance escort" [Ref. 21]. This escort will take part

in the development of the software and, when the systems

responsiblity for maintenance is transferred, he goes along

with it to provide the needed experience to reduce the

initial maintenance effort and improve the learning of the

maintainers.

Since programmers will not be constantly in demand on a

specific project, the organization should be constructed

such that departments with experienced personnel are organ-

ized around a specific functional area of software, such as

input. arithmetic, output, signal processing or data display

types of software. This would allow the programmers to

become experts on specific areas. The departments would

consist of functional areas that are common to all projects

and allow programmers to become experienced with that type
of function. The departments would send the required people
to the requesting projects on an as-requested basis. To

ensure familiarity with the project, specific programmers
would be allocated to certain projects on a consistent

basis. The objective of this system is to obtain greater

utilizaton of experienced programmers, the alternative being

their complete devotion to a specific project with the

resulting under utilization of their skills and abilities.

The management of software maintenance is unique in many
respects and requires attention to some special areas.
First, it should be realized that about twenty percent of
the time the maintainer will actually be employed in correc-

tive maintenance [Ref. 27). The remainder will be employed

in conducting adaptive maintenance. This is important, in

that, while it may be difficult to fix bugs in programs, it
is more difficult and costly to add enhancements to the

software such that it meets the same stringent requirements

23

of the original product. The maintenance of software is a

repeating cycle that requires the same steps, although on a

smaller scale, that were conducted during the development

phase. Figure 2.3 shows the recommended cycle for including

enhancements.

It is important that the addition of an enhancement take

place in much the same manner as the development process to

ensure that the quality of the software is maintained. The

maintainer needs to document changes, employ structured

programming and modularization in much the same way.

Failure to do so will throughly destroy a good program and
even shorten its possible useful life. Critical to
conducting adaptive maintenance is the determination of
whether it is worth the effort to add the enhancement. An

evaluation should be conducted on each proposed enhancement,
to determine if the potential benefits exceed the possible

long term costs. This process when used on small scale
enhancements may prove infeasible, but it should definitely

be required for all enhancements that have the potential for

consuming large amounts of resources.

Reused code will show an additional benefit in the area
of changes. That is, if a change is required in one module

that change can possibly be instituted in all other

instances of that module. The correction of an error would
then only have to be detected and corrected once, rather
than waiting for the remainder of similar modules to err and

require correction.
Essential to the maintenance function is the accumula-

tion of data on the various types of projects that are being

maintained by the activity. These data need to be tabulated

from the beginning of the project to its end and require
completeness. That is the data need to include information
on the functions and modules of the program. For instance,

24

I-

Oiechfcattn

Ie Ike

igure 2.3 ctutowgtemineac poes
5o,4e f cI* Carst ' Iti

25wtaf

they should include the error rate, what types of errors,

when they were found, and especially how long it took to

find and repair them. These data will enable management to
gain better insight into the maintenance process and allow

them to form better estimates on personnel requirements to
conduct this function. Models can prove useful in this

respect, but will prove even more useful when there are data
available to determine their validity. The data accumulated
will provide much irformation on the maintenance process and

its usefulness will cross over into other projects because

of a large degree of common properties in software.

H. SUMMARY

One of the ideas that should have become apparent from

the preceding discussion is that maintenance, quality and
reliability are intrinsically related. Designing for reli-

ability and quality, while not necessarily increasing main-

tainability, will reduce the maintenance costs, if for no

other reason than the elimination of errors. These three

are more deeply related because the use of structured

programming and modularity not only increases maintain-
ability by decreasing complexity but also increases quality

and reliablity for the same reason. The human programmer is

able to comprehend only a limited amount of a program.

These techniques allow him to understand what he is working
on and in what context, reducing the probabilty of errors

early in the life of the system. That is the key to all of

maintenance, making the software as easily understandable as

is possible, thus increasing the capability of the main-
tainer to find and repair or add the desired changes. It is

possible to develop reliable software that is relatively

complex without making it maintainable; it has probably been

done more than once. It is easier to accomplish and

26

!~

certainly less expensive to conduct the software development
process with the objectives of reliablity, quality, and

maintainability when these tenets are adhered to than it

would be if they are not considered.

The three potential methods to achieve the above objec-

tives are dual code,reused code and bebugging. The latter

will be explicitly treated in the following chapter. Dual

code can increase reliability of code by providing a ready
check on that code to ensure that it is error reduced.

Reused code should reduce costs through reduction in testing

of modules and coding required. It should additionally

improve reliability through the use of previously tested and

proven code. Bebugging will allow the manager to estimate

the error rate of the code and its maintainability through

some simple testing procedures. This method is important in

that it provides a measure of the quality and maintain-

ability of the program, thereby improving the planning for
maintenance.

27

InI. iRSUUPT NODEZ 121 JIM AZIG PERSONNEL]IUIIET

A. INTRODUCTION

Prior to entering the maintenance phase, it is extremely

important to have an estimate of the resources required to

conduct it. An especially important part of these resources

is the personnel requirements. The people who maintain the

systems software will prove to be the largest single expense

of the maintenance portion of the life-cycle. There have

been a number of models developed to estimate the develop-

ment costs of software and a few have attempted to extend

their predictions to include the maintenance phase

[Ref. 23], [Ref. 24], [Ref. 25], (Ref. 26]. The emphasis of

these models is to utilize the functions, size, and applica-

tions of the software to estimate its life-cycle costs prior
to the initiation of development and coding. This is essen-

tially the macro approach to looking at the overall func-

tions of the system and using then to estimate resource

requirements.

while in many cases any model or estimating technique is
better than no formalized technique at all, the construction

of a model should be based on a thorough understanding of

the components of the system. This could be considered the
micro approach. The model presented here is one approach to
understanding that portion of the life-cycle called mainte-

nance. It attempts to explain the interactions of the

components of software maintenance with a view toward pred-
icting the. resource requirements. Fundamental to the model

is the fact that the development phase has been completed

and that the system is in use.

28

Therefore, the size, functions, and applications of the

program are well kncvn and can be utilized in the estimation
model. This approach should integrate well with HCTSSA&s

role as a maintenance facility as this is the point in time

that they assume responsibility for the software system.

The presentation of the model covers the two types of
maintenance that were defined in Chapter I, corrective

maintenance and adaptive maintenance. The objective of the
model is to determine the amount of effort required to
conduct both types of maintenance.

The major assumptions made in this model are that the
development of the system has been completed and it is
currently in use. The maintenance facility is assuming
responsibility for the software and, thus, knows its

content. This allows for more accurate use of an estimation
model based on an in-depth analysis of the code itself.

Further assumptions are that the system has been developed

in accordance with the guidelines presented earlier in this
paper. While all guidelines may not have been followed in
every instance, the model is presented such that the reader

should be able to adjust its construction to suit his use.

B. DEVELOPMENT OF METRIC TO ESTIMATE CORRECTIVE BAINTENANCE
WORKLOAD

1. Bebugaina

"Bebugging" is a term coined by T. Gilb and is
derived from a concept developed by H. Bills that introduces
a number of known errors into a program to calibrate the
error location process (Ref. 27]. The concept is that of
introducing a known number of errors and then performing a
debug exercise on the program. The objective is to compare
the seeded number of errors detected to the errors that

29

occurred naturally in the program and then use these figures

to estimate the total number of bugs present in the program.
Conducting this test over a specific period of time will
afford a measure of the bug detection rate.

G. Schick and R. Volverton in their article, "in
Analysis of Competing Software Reliability odels" summar-

ized the work of H. Hills and the later work of S. Basin and
presented a formula that can be utilized in calculating an
estimate of the maximum number of errors present in the
software. That formula is:

N - INT -k(1)xl- n(1) 1 - <1>

where,

Na maximum number of errors,

INT= integer value of evaluated expression,
r= number of statements in the test,
k(1)- number of statements in test in which indigenous

errors were detected,
k(2)- number of statements in test in which seeded

errors were detected,
n(1)- number of statements in which errors were intro-

duced,

I total number of machine executable statements in the

system [lef. 28].

This formula is based on a count of the statements with

errors. The errors are seeded randomly in the entire
program and in executable instructions only.

2. Iap lemntaijn o Bebua ing

The implementation of bebugging should be relatively

simple and straightfoward. The seeding of the program needs

30

to be done randomly. This can be done manually or automati-

cally through the machine' s use of a predetermined algor-

ithm. The error type to be introduced should be considered

at this point. The type of error introduced needs to repre-

sent the proper proportion of that error in relation to the

total number of errors. [Ref. 29]. The type of bugs or

errors considered in this test are semantic. The categories

of semantic bugs are computational, logical, and data

(Ref. 301. The syntactic type of bug is not considered as

it should be detected during complilation [Ref. 31] and

design errors are generally considered too difficult to

artificially introduce. The best method for obtaining the

proportion of error types is to refer to the vendor supplied
information on this project and to data that has been accu-
ulated on other similar projects. The errors introduced

should reflect this proportion in order to obtain a repre-
sentative estimate. hen the test is run each type of error
should be calculated separately using the above formula.

This is essential as each type of error will require a

different degree of effort to repair.

Two methods are readily apparent for detecting
errors after the program has been seeded. The first of

these methods is manual detection by the programmer or

programmers who will be involved in the maintenance of the

system. It is important that those involved with the

maintenance participate in the test to achieve calibration

of the model to the programmer's capabilities and possibly

eliminate any variance that could arise from differences in

programmer skill. This will provide additional information
on how long it takes for the programmer to detect and then
correct the errors. The test should consist of timing how

long it takes for the programmer to locate an error by type.

This could be accomplished by maintaining a time-sequenced

31

listing of when each error was found by type. The detection

rate could then be established for each error type by

obtaining the average number of errors detected per a

specific time, in this case a man-hour. This rate is valid

if the system is to be constantly reviewed for errors by

these individuals. The alternative to this method is to

develop a model which is able to predict an error rate valid

for the operating cycle. This model would obtain a value
that would show the rate at which errors appeared during

operation of the system and required repair.

The second method of obtaining the error count is

through the use of the dual code technique. Dual code

provides two parallel implementations of the design specifi-

cations, in either the same or different languages and has

been discussed earlier in section 3 of Chapter II. In the
bebugging context the seeded or artificial errors are intro-

duced into one of the code sets. The two code sets are run
in parallel and their results are compared during running
for discrepancies [Ref. 321. The differences in the results
will yield, since the two sets of code were coded indepen-
dently, indicators .as to where errors lie in the program.

One set of code will, in effect, check the other through
this process. The code set with the introduced errors will

be used to obtain the error estimate. This method will

yield only an estimation of the total number of errors and

an error rate per lines of code. It will not allow one to

determine the maintainabilty of the code through the use of

programmers.
Since the dual code method will yield only an esti-

mated number of errors, the two methods of manual and dual

code should be used together. The reason is to obtain a

check on the number of projected errors, and because only

the manual method can provide an indicator as to the time

32

required to detect and correct errors by a specific

programmer. If only one method can be used due to resource

constraints, the manual method is preferred as it provides
three types of information, that of error rate, detect-

ability of the errors, and the maintainability of the code.

Bebugging was selected as a possible method for the
maintenance facility to evaluate the software for planning
purposes for a number of reasons. It is conducted indepen-
dently of the vendor and allows verification of his data and
the techniques employed. While discrepancies between esti-

mates are sure to arise, large discrepancies should be
suspect and should subject either the facility's or vendor's

methods to re-evaluation. The bebugging test is conducted

under the conditions and with the people that will be preva-

lent during the maintenance phase. The test should be rela-

tively simple to structure and implement by the facility.

Additionally, the concepts involved are easy to understand

by those participating.

There are some distinct disadvantages to bebugging
that should be discussed. The first is that it fails to

identify the degree of error. The degree of an error can

fall into one of five categories: 1) error which prevents

the accomplishment of an essential function, 2) error which

adversely affects the accomplishment of an essential func-
tion degrading performance, 3) error which adversely affects
the accomplishment cf in essential function degrading

performance, but has a work-around solution, 4) error which
is merely an operator inconvenience, and 5) all other errors

(Ref. 33]. As can be seen from the above definitions, the
degree of the error is the extent to which the system's

functioning is affected and not the cause of the error or

error type. The degree of error and design errors do not

lend themselves to detection though the bebugging technique

33

due to their complexity. Alternative methods need to be

developed in this area.

an additional trouble area became apparent during

research and that is the problems that occur when repairing

a bug. The possibility always exists for the repair)f

the bug to introduce additional errors through unpredictable

effects on other modules. The best insurance to insuLte

against these effects is the preservation of modularity and

the use of information-hiding modules which do not allow the

programmer to make any assumptions that could later prove

dangerous to the program. Additionally, the use of struc-

tured programming and the techniques described in Chapter

II, section C should work to reduce the design errors that

may develop later. This is exemplified by Figure 3.1.

The use of bebugging will produce an estimate of the

error detection rate that can be used for planning purposes,

if it is recognized that this is just an estimate and not
what will occur. The bebugging method can be used

periodically to evaluate the current status of the software

at various points along the maintenance path. The estimates

derived therefrom can be used to refine or revise planning

figures. Further, greater confidence in an estimate can be

achieved through more testing, although at additional cost.

3. Estiation o1 CGXUctivU AJIMi1nE workl

The corrective maintenance workload can be predicted

using the number of estimated errors in the system and the

rate of error detection established by the programmers

during the bebugging test using equation <1>. The error

detection rate as well as the number of errors should be

divided into the three types of semantic bugs identified

earlier. The resultant formula should estimate the amount

of corrective maintenance that will be required on the

system.

34

65

60 Before StructureO Results

55

50

45

40 -

35 -

30 -

25 -

20 -

15

10

5I

IBM SAMI YOUROON MCAUTO

Errors Per 10,000 Lines of Cooe.

Figure 3.1. Software maintenance improvements
with structurea programming.

5owcet NcC 1ws Car 6

35

The formula is:

C (c) + (1) + (d)C U-- + -<2>

d (c) d(l) d (d)

where,

CM- total corrective maintenance required in man-hours,

1(i) a number of i type error estimated

(c-computational, 1-logical, dadata)using equation <1>, and

d(i) - the detection rate in errors per man-hour of i
type error.

C. DEVELOPMENT OF METRIC TO ESTINATE ADAPTIVE MAINTENANCE

LOAD

Adaptive maintance, as previously defined, is that

maintenance conducted to improve the system by increasing
its capabilites or change its operation to a form that the

user desires after the system is operational. These changes

or enchancements are accomplished to improve the overall

efficiency of the system, add new features, or provide

interfaces with other systems that were not called for in
the original design. The enhancements, in many cases,

should not substantially alter the original design of the

program. If a major redesign is warranted, the system
should be returned to the development phase to ensure that
the design is done properly. The adaptive maintenance
discussed here will cover those cases where modules may be

changed or added, but the structure of the original program
essentially remains intact.

The addition of enhancements should be conducted along
the lines of the original development process to ensure

that, while the system is enhanced, the changes are inte-
grated into the system with a minimal degrading effect on

36

performance. &n understanding of the system to be enhanced

is required. This understanding is governed by the logical

and structural complexities of the software. Idaptive

maintenance involves two major types of enhancements. A
portion of them involves alteration and a small addition of
code and a portion requires the addition of a new module,
replacement of an older module or a restructuring of the
software's structure. The degree to which each portion

presents itself during the life of a system is as yet indet-
erminate and will require in-depth study. Experience can
provide some indication as to how often and to what extent
these two degrees of enhancement are made.

1. an 2 lgleadus = flic SI 1 IAU.sp gf I.bi

In order that a modification may be made, the indi-

vidual making the change needs to understand the system. The

amount of time he takes before he can begin useful work on

the system is governed by the complexity of that system. The

degree of software complexity is inversely related to the
level of understanding. The more complex the software, the
less well understood it will be until more effort is
expended in an effort to imprcve comprehesion.

Halstead's development of programming effort essen-

tially realized this. Halstead's effort metric was devel-
oped to analyze the effort required to construct a program

in a specific language from a preconceived algorithm. Its

application in maintenance for using it to rate the

complexity of the software should prove valid. To develop

programming effort Halstead used the concepts of program

level and volume [Ref. 34].
Program level refers to the level of a program's

implementation. There is a minimum level of implementation

37

where the fewest number of operands and operators possible

can be used and the program will still function as intended.
This most elegant of implementations is never realized in

fact and some lover program level is achieved. The easiest

language to use would have a program level of one, where any
procedure desired would consist of merely a call on that
procedure. This would require an infinite list of procedures
and is not realizable. Implementations of programs will
fall into an area of program level less than one. Use of
this greater number of statements and the consequent expla-
nation results in greater understanding of the implementa-
tion for the person less familiar with the system The
difficulty of the comprehension of a program varies

inversely with the level of that program (Ref. 35].
As presented by Halstead, the program level is

affected by the operators present. The larger the number of
operators employed, the lower the level of implementation.

The minimum number of operators possible is two, where one

would consist of a function designator and the other an
assignment operator. The program level is therefore propor-

tional to the minimum number of operators possible divided

by the actual number of unique operators (Ref. 36].
Operands do not show a similar minimum over all

implementions. In cases where an operand name is repre-

sented, the implementation is at a lower level than was

possible if the operand was used only once. The program

level is then proportional to the ratio of the number of
unique operands to the total operand usage (Ref. 37].
Combining the two proportionalities and noting that the
constant of proportionality is one, as this is the maximum
defined value of program level, yields the program level, L,
as

38

L 2 l<3>

where,

n(1) = the number of unique operators,

n(2) = the number of unique operands,
N (2) = the total number of operands present and two is

considered the minimum number of operators possible

[Ref. 38].

Program level represents a meaure of how well the software
has been implemented in relation to the capabilities of the

language that has been used. The better the implementation
the closer to one the value of L becomes.

Program volume recognizes the importance of
obtaining a metric for the size of a algorithm that not only

measures its physical length but also the number of distinct
operations performed in the program. The objective is to

allow application to a wide variety of languages. Volume V
has been defined as:

where,
V is equal to length or 111N2, the total number of

operators and operands utilized, and
n is the vocabulary of unique operators and operands or

n(1)+n(2) tRef. 39].

This volume can be applied to any programming language and

measures the size of the program in the language coded. It
takes into account the capabilites of the language as

presented by the number of unique operators and operands and
its size as represented by the total number of operators and
operands. Program volume represents an overall measure of
the size of a program in relation to that program's compre-

hensibility.

39

To obtain the effort metric, E, Halstead uses the

ratio of program volume to program level CRef. 41].

2 = V/L <5>

From this equation it can be seen that as the program volume

increases, the effort or complexity will increase and that

as the program level increases the effort decreases in kind.
Executing the necessary substitutions to allow for calcula-

tion of the complexity of the program the equation becomes:

n(1) x(1)- V(2)) x ln(n(1) + n(2) <6>
ln 2

This formula, when used to determine the complexity

of a program in relation to a programmer's debugging perfor-

mance, accounted for over twice as much variance in perfor-

mance as a metric that counted solely the total number of

program statements (Ref. 411. The resultant value, when

applied to programs on board, will provide an estimate of

the complexity of a program, thereby refining the estimate

of the quantity of resources required to make alterations to
the software.

ImplicitT treated in the above formula is the way in
which modularity affects the complexity of the program. The

use of modules such as functions, subroutines and macros
will reduce the program volume through their inclusion.

They are performed multiple times during execution of the

program, but will be present only a single time when the
software is reviewed or checked. Through their single

inclusion, they reduce the total number of operators and
operands present, directly reducing the program volume and
increasing its comprehensibility. kdditionally, as Halstead

indicated, the number of unique operators will increase with
the addition of subroutine or function calls, again reducing

40

the overall complexity of the system. Interesting to note

at this point is that Halstead, through further development,
has stated that E will vary with the square of the volume
and not linearly in relation to the programos potential

minimum volume (the best implementation possible) [Ref. 42].

This also demonstrates that as modules are added the

system's complexity is reduced, not linearly, but as some

function of the square.

2. Est liol 2f. Jaaive aJ Lta ance Workload

The estimates of the amount of personnel effort

needed will require the combination of the above complexity

metric and the benefit of previous experience on similiar
projects. The metric can, to a large extent, predict the
amount of time required to understand a program, a factor
that is critical to the proper conduct of adaptive mainte-

nance. This effort should be required each time the system

is to be enhanced. The shortcoming of the model is the

requirement for a prediction of the frequency of enhance-
ents and their degree. The degree of alteration is a defi-

nite consideration as it will govern the time and effort

required to accomplish the changes. Major alterations will
take greater time and effort than will minor ones, but a
large number of minor changes can easily ou t weigh one major
change in effort.

The otly present method used to estimate the

frequency of alterations required is experience. The degree
of enhancement should be divided, at least initially, into

major and minor. A major enhancement would consist of at
least the replacement of an old module of the system or the

addition of a new one. A minor enhancement would consist of
an alteration to a module in which either a line of code is

rewritten or replaced, or the module itself is rewritten

41

with its function remaining as it was prior to the modifica-

tion. Until further data is accumulated on the type of

enhancements conducted, this initial distinction should be

used to improve the estimation process.

Two methods are suggested for the use of the

complexity metric. The first would consist of simply multi-

plying the average time of all enhancements by the ratio of

the complexities for the new system to the average complexi-
ties of all the previous systems. The preferred method,

though, is to use the average time to conduct the enhance-

ment and the average complexity thereof broken out by the
enhancement degree. Each resulting average by enhancement
degree should then be multiplied by the ratio of the new

system's complexity to the average of the previous system's

complexity and the frequency of enhancements per project.

This formula is:

E x (maj) x N (ma j) x (min) x N (min) <7>
1E(aver. for maj) E(aver. for mmi)

where,
An= total adaptive maintenance required in man-hours,

x(maj) = the average time to add a major enhancement,

x(min) = the average time to complete, a minor enhance-
men t,

E(aver for maj) = the average complexity of major

enhancements using equation <6>,
E(aver for min) = the average complexity of minor

enhancements using equation <6>,
N(maj) = the average number of major enhancements,

N(min) = the average number of minor enhancements, and

E = the complexity of the program using equation <6>.

42

N(maj) and N(min) can be used in the equation in two ways.

The first, as presented, is as the frequency that enhance-

ments of the two degrees have occurred in the past. The

other way could be to use an estimated number of enhance-

ments, if management has some idea of special circumstances

in which these numbers will vary from past events.

D. MODEL AGGREGATION

The entire maintenance effort required for the project

from time the system is accepted at the maintenance facility

can be calculated by adding the estimated corrective mainte-

nance workload to the adaptive maintenance workload. This

yields:

TM = AM + CM <8>

where,

TM= total combined maintenance required in man-hours.

This result should yield an estimate of the total mainte-

nance effort required and needs to be subdivided into years

to be more useful to. management. One method of accom-

plishing this is to divide the total maintenance effort by

the estimated number of years remaining in the project.

This will yield a straight line average of maintenance that

fails to show any variations that normally present them-

selves later. Its advantage is that it is extremely simple.

Another method is to reevaluate the project yearly using the

above formulas and actual experience. This may prove infeas-
ible as the estimation needs to be conducted well in advance

of that year for budgeting purposes.

The last method for developing annual personnel require-
ents is to return to the components of maintenance. Vorse

case corrective maintenance can be estimated as remaining at

43

least constant if not decreasing throughout the remaining

life of the software. The error rate will prove highly

dependent on the enhancement rate. It seems reasonable to

assume that, if a large number of enhancements are made, the

system's error rate will increase correspondingly. Thus,

the normal assumption that the error rate decreases as the

project continues will not prove valid, if a sizeable number

of enhancements are made. Additionally, if no enhancements

are made the error detection rate will never disappear

entirely and will remain much higher than expected. This

variation should be insulated against by utilizing an annual

detection rate where the initial number of estimated bugs is

divided by the estimated annual detection rate. The esti-

mated annual detection rate can be estimated from the bug

detection rate established during the bebugging test.

Periodic retesting of the system should be conducted espe-

cially when a major enhancement has been added to revalidate

the error detection rate.

The adaptive maintenance phase, at over seventy percent

of maintenance costs, accounts for the largest portion of

the software maintenance budget in government activites

(Ref. 43]. Therefore, it is this area that demands the

greatest efforts to account for cyclic activity. Again, no

predictive ability for the number of enhancements by type

exists in this model and the only method is to use data

obtained from previous projects to determine the enhancement

rate at different stages in the maintenance phase. These

estimates, broken out by year, could then be added to the

anticipated corrective maintenance loading to obtain the

annual figures to be used for planning. This model does

develop a prediction of the quantity of resources required

to implement each enhancement by type.

441

E. CHAPTER SU NABY

The model has been developed considering the two

elements of maintenance as defined here, corrective and

adaptive maintenance. It has further been shown to yield an

estimation of the total manpower requirements for the

project from the time of assumption of maintenance responsi-

bilities. These figures have been manipulated to provide

annual estimates of manpower requirements. Halstead's

effort metric and Gilb's bebugging provide the basis from
which the model was developed.

The largest requirement for this model, or any model for

that matter, is to obtain data with which the results of the

model can be calibrated and tested. The requirement exists

for the establishment of a data base on personnel expendi-

tures during the maintenance cycle. Without this data any

model developed cannot be tested fully. Additionally, the

models developed will not be calibrated properly to allow
for their fullest utility.

The model developed here has been designed to maintain,

to some extent, simplicity in order to allow it to be

employed in a working environment. It has been outlined so

that the reasoning should be evident, allowing managerial

personnel the capability to adjust it to fit their situa-

tion. The model is based on those concepts that have appa-

rently received favorable reviews and have been employed in

other similiar situations.

45

I_

IV. OK1LIU2U

As this research has shown, it is important to establish

early in the life of a software project the desire to reduce

maintenance costs. With this commitment, the development

phase may take longer and cost more, but the long-term

results will be worth the extra effort. Maintenance costs
will continue to consume the largest portion of the

resources allocated to software systems and only through the

conscientious application of the tenets outlined in Chapter

I can this portion be expected to be reduced.

Host important of these tenets is the use of structured

design and structured programming to aid in the reduction

and identification of potential errors early in the life of
the project. This is the time when they are least expensive

to repair. Reused code will provide benefits throughout the

entire life of the project by reducing devlopment and

maintenance costs by providing previously coded and tested

nodules for inclusion in the software being developed. The

use of a high level language will increase the

maintainabilty of the program by making it more
understandable.

The estimation of the personnel requirements will aid
management during the budgeting process. The number of
unplanned occurrences, such as exceeding budget limitations
or unexpected levels of maintenance, will decrease because
of greater comprehension of the maintenance phase and its

com ponents.

This model is a first attempt at developing a system
that will estimate the personnel requirements for

maintenance. It has been presented in such a manner as to

46

increase understanding of the items that affect maintenance

in both favorable and unfavorable ways. The reader is

encouraged to utilize the model and adapt it to his own use

by applying it to his own situation and requirements.

An important item to note is that a data base has to be

established that catalogs those items concerning the

software that are important to the estimation and

understanding of the software maintenance process. This

information should include at least error detection rates,

correction times, number of enhancements made as well as the

estimated rates for each of these items.

47

LIST 3F REFERENCES

1. Reys Associates Inc., 21 q

2. Naval Undervwater Systems Center Techincal Report

#583 t978. dn r

3. Lientz, B. P. and Swanson, E. B.0 5Qt4 i llntnf9
manceIM& p. 105, Add ison- fes1eIy-7TWU.

4. schneidewind, Norman F., kAj 4 o y~~ M !
&tyrkj 2.!;.Nval Postgradua e c o PO~7Wi~

5. McClure, CarzaL. U4ar ; 4 u .
'i a.a 0~~C v e

6. Ibid, p. 41.

7. Ibid, p. 42.

8. Lientz, B. P. and Swanson, L B. !K ftv~U fntena~ge
gaema, p. 68, 1.1dison- ;Sle,~U

9. McClure, Car ma L.,,U jnj tw4R 12 m-ai
IS-eagVan raal sId opa nyp

10. Ibid, p. 44.

11. Ibid, p. 45.

12. military Standard MLL-STD-1679(NAVY), V AB ani
Sofa.are, Develo2hiflat p. 8, December 197T.

13 Lientze B. P. and Swanson, E. B. , 1ftwara JIntanca~
iiugMg~un, p. 7, Addison-eleyTU-

154. Lanergan Robert G. and Duqan. Denis K.0, "Software
~jgneru vith Reusable eDesha dn Zodes," Z

I ~p. 296, Sep ember 19 81.

15. Ibid, p. 303.

148

I

16. Gilb. Ton e p. 58, Winthrop
Publishers Inc. '21"2.

17. Ibid, p. 85.

18. Ibid, p. 87.

19. Lientz, B. P. and Swanson, E. B., a~terntag
U~gM2ua,, p. 30 and 15d4 kddison-VeIeve

20. Ibid, p. 69.

21. Ibid, p. 154.

22. Ibid, p. 68.

23. TRW Defense and Space Systems Group, "Softvare Cost
Analyss and Estiattingf .Ag io:r p Isei Softva.

24. Rome Air Development Center RATC-TR-81-144 "in
Evaluation of Software :ost Estimating models", by

Robert Thibodeau, Jae 1981.

25. Shooman, Martin L. , "Tutorial on Software Cost
Models'$", ~ h22 ~~~t11 1M oel
October 1979.

26. Air Force Vriyht Aeronautical Laboratories
AFWkL-TR-80-1056 Vol. II, "Predict ive Software Cost
Rod*l Study", by aughes Aircraft Company Support
Syst.ems, June 1980.

27. Gilb Ton. oft !e fIt§gg, p. 28, Winthrop

Publ-shers Ray. o-e-s"77.

28. S~ik ereJ.ad letn RaV., *An Analysis

29. Gilb. Tom, Sg C 5,L,4gj, p. 37, WinthropPublishers inc. -T .

30. Curtis, Bill Sheppard, SylviaB and Billiman, Phil
"Third Time 6harm; Stronqer pre~iction of Pro q~ammerofe orm by Sotvare C6mp18t!4 etric", -Atv

Iagt.44IA h54!

Pe.raEac, p. 358, September 197.

49

31. Ibid, p. 358.

32. Gilb Tom, fzLars *ho Ics, pp. 46-48, Winthrop
Publishers Inc. ,- 7.

33. Bilitary Standard MIL-STD-1679(NAVY). V22n .
1=1U 22! na UL U.-t, p. 19, Oecember Iff.

34. Halstead Iaurice. , . s Ri a .igp. 47, Elsevier NortHollan,477".

35. Ibid, p. 26.

36. Ibid, p. 27.

37. Ibid, p. 27.

38. Ibid, p. 27.

39. Ibid, p. 19.

40. Ibid, p. 47.

41. Curtis, Bill Sheppard Sylvia B. and Milliman, Phil,
"Third Time tharm: Stronger PreAiction of Programmer
Performance by Software Conlexit Metric", y. ftwaE
niZ ..1LU A, p. 358, Septemger 19e9.

42. Halstead Iaurice .1449., Elemets o-I.. l,
p. 417, Elsevier orth Vol ,'T977

43. General Accounting Office, AFMD-81-25, "Federal
Agenciess Maintenance of Computer Programs: Expensive
and Undermanaged", p. 42.

50

INITIAL DISTRIBUTION LIST

No. Copies

I. Defense Technical Information Canter 2
Cameron Stati n
Alexandria, Virginia 22314

2. Defense Logist cs Staries Information Exchange 2U. S. Armyogs.tics Ranagement Center
Fort Lee, Virginia 23801a

3. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

4. Department Chair n, Code 51 2
Department of Ada nist rative Sciences
Naval Postqradua t e School
Monterey, California 93940

5. Department Chairmn Code 52 2
Department of Computer Science
Naval Post raduate School
Monterey, California 9390

6. Dr. Dan C. Boger, C913 54$K 5
Department o A ainistrative Sciences
Naval Post raduate School
Monterey, California 93940

7. LCDR Ronald nodes, C3de 5?MF 3
Department of.Computer Science
Naval Post raduate School
Monterey, California 9390

9. LtCql. A. E. Burns, 1II, USHC 2
Marine Corps Tactical Systeas Support Activity
Camp Pendleton, California 9255

10. Commandant of the Marine Corps (Code RPP-21) (
lATTN: Captain V 35. erring, II, USHC)
Radquarters United States arIne Corps
Vashington, D. C. 20381

.f I . . .I II l. . . | ..

DAI E

ILMEI

k

